4,239 research outputs found

    Comparative analysis of the essential oils from normal and hairy roots of Panax japonicas C.A. Meyer

    Get PDF
    The essential oils were extracted with steam distillation from normal and hairy roots of Panax japonicus C.A. Meyer. The constituents of essential oils were analyzed by gas chromatography mass spectrometry (GC-MS). The results showed that 40 and 46 kinds of compounds were identified from the essential oils of normal and hairy roots; they amount to 93.3 and 95.89% of the total detected constituents, respectively. Both of them own 18 kinds of same compounds, relative peak areas all exceed 50%, except that, the roots alone own 22 kinds of compounds, and the hairy roots alone own 28 kinds of compounds. In the roots, those higher content compounds were hexanoic acid (11.6%), falcarinol (10.04%) and 3-methylbutyric acid (9.56%); however, in the hairy roots, they were caproic acid (13.92%), spathulenol (9.96%), 1H-cycloprop azulene (9.15%). These compounds have lots of bioactivity, for anticancer, antitumor and antibiosis among others. The result showed tremendous value on producing the medical components with the skill of hairy roots.Key words: Panax japonicus, essential oils, gas chromatography mass  spectrometry

    A survey of Pireneitega from Tajikistan (Agelenidae, Coelotinae)

    Get PDF
    Five new species of Pireneitega species from Tajikistan are described: P. zonsteini sp. n. (male female), P. muratovi sp. n. (female), P. tyurai sp. n. (female), P. ramitensis sp. n. (female) and P. kovblyuki sp. n. (male). Pireneitega major (Kroneberg, 1875) is redescribed for the first time based on the lectotype designated here. DNA barcodes for the five new species are documented for future use and as proof of molecular differences between these species

    Machinery Early Fault Detection Based on Dirichlet Process Mixture Model

    Full text link
    © 2013 IEEE. The most commonly used single feature-based anomaly detection method for the complex machinery, such as large wind power equipment, steam turbine generator sets, and reciprocating compressors, exhibits a defect of low-alarm accuracy due to the non-stationary characteristic of the vibration signals. In order to improve the accuracy of fault detection, a novel method based on the Dirichlet process mixture model (DPMM) is proposed. First, the features of the mechanical vibration signals are used to construct the feature space of the equipment. The DPMM modeling method is then applied to self-learn the probabilistic mixture model of the feature space. The normal working condition model is used as the benchmark model. The early fault detection is realized by using a precise difference measurement method based on Kullback-Leibler divergence to calculate the difference between the real-time model and the benchmark model accurately, and by comparing the calculation result with a self-learned alarm threshold. The effectiveness and the adaptability of this novel early fault detection method are verified by comparing it to the single feature-based anomaly detection method and the Gaussian mixture model (GMM)-based early fault detection method

    Micromagnetic simulations of current-induced magnetization switching in Co/Cu/Co nanopillars

    Get PDF
    Author name used in this publication: S. Q. Shi2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Current-induced magnetization dynamics in Co/Cu/Co nanopillars

    Get PDF
    Author name used in this publication: S. Q. Shi2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    MicroRNA-210 and endoplasmic reticulum chaperones in the regulation of chemoresistance in glioblastoma

    Get PDF
    Glioblastoma multiforme (GBM) is the commonest primary brain tumour in adults characterized by relentless recurrence due to resistance towards the standard chemotherapeutic agent temozolomide (TMZ). Prolyl 4-hydroxylase, beta polypeptide (P4HB), an endoplasmic reticulum (ER) chaperone, is known to be upregulated in TMZ-resistant GBM cells. MicroRNAs (miRNAs) are non-protein-coding transcripts that may play important roles in GBM chemoresistance. We surmised that miRNA dysregulations may contribute to P4HB upregulation, hence chemoresistance.We found that miRNA-210 (miR-210) was P4HB-targeting and was highly downregulated in TMZ-resistant GBM cells. Forced overexpression of miR-210 led to P4HB downregulation and a reduction in TMZ-resistance. A reciprocal relationship between their expressions was also verified in clinical glioma specimens. Our study is the first to demonstrate a potential link between miR-210 and ER chaperone in determining chemosensitivity in GBM. The findings have important translational implications in suggesting new directions of future studies.published_or_final_versio

    Electro-optic coupling of wide wavelength range in linear chirped-periodically poled lithium niobate and its applications

    Get PDF
    We theoretically investigate the electro-optic coupling in an optical superlattice of linear chirped-periodically poled lithium niobate. It is found that the electro-optic coupling in such optical superlattice can work in a wide wavelength range. Some of examples, with bandwidths of 20, 40, 80, 120nm, are demonstrated. The way to determine the electric field for perfect conversion between o- and e-ray and the method using apodized crystals of tanh profile to reduce the ripples are shown. As one of its applications, one kind of broadband Solc-type bandpass filter in optical communication range is proposed. (C) 2010 Optical Society of Americ

    GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity

    Get PDF
    RATIONALE: Albuminuria is an early clinical feature in the progression of diabetic nephropathy (DN). Podocyte insulin resistance is a main cause of podocyte injury, playing crucial roles by contributing to albuminuria in early DN. G protein-coupled receptor 43 (GPR43) is a metabolite sensor modulating the cell signalling pathways to maintain metabolic homeostasis. However, the roles of GPR43 in podocyte insulin resistance and its potential mechanisms in the development of DN are unclear. METHODS: The experiments were conducted by using kidney tissues from biopsied DN patients, streptozotocin (STZ) induced diabetic mice with or without global GPR43 gene knockout, diabetic rats treated with broad-spectrum oral antibiotics or fecal microbiota transplantation, and cell culture model of podocytes. Renal pathological injuries were evaluated by periodic acid-schiff staining and transmission electron microscopy. The expression of GPR43 with other podocyte insulin resistance related molecules was checked by immunofluorescent staining, real-time PCR, and Western blotting. Serum acetate level was examined by gas chromatographic analysis. The distribution of gut microbiota was measured by 16S ribosomal DNA sequencing with faeces. RESULTS: Our results demonstrated that GPR43 expression was increased in kidney samples of DN patients, diabetic animal models, and high glucose-stimulated podocytes. Interestingly, deletion of GPR43 alleviated albuminuria and renal injury in diabetic mice. Pharmacological inhibition and knockdown of GPR43 expression in podocytes increased insulin-induced Akt phosphorylation through the restoration of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activity. This effect was associated with the suppression of AMPKα activity through post-transcriptional phosphorylation via the protein kinase C-phospholipase C (PKC-PLC) pathway. Antibiotic treatment-mediated gut microbiota depletion, and faecal microbiota transplantation from the healthy donor controls substantially improved podocyte insulin sensitivity and attenuated glomerular injury in diabetic rats accompanied by the downregulation of the GPR43 expression and a decrease in the level of serum acetate. CONCLUSION: These findings suggested that dysbiosis of gut microbiota-modulated GPR43 activation contributed to albuminuria in DN, which could be mediated by podocyte insulin resistance through the inhibition of AMPKα activity
    corecore